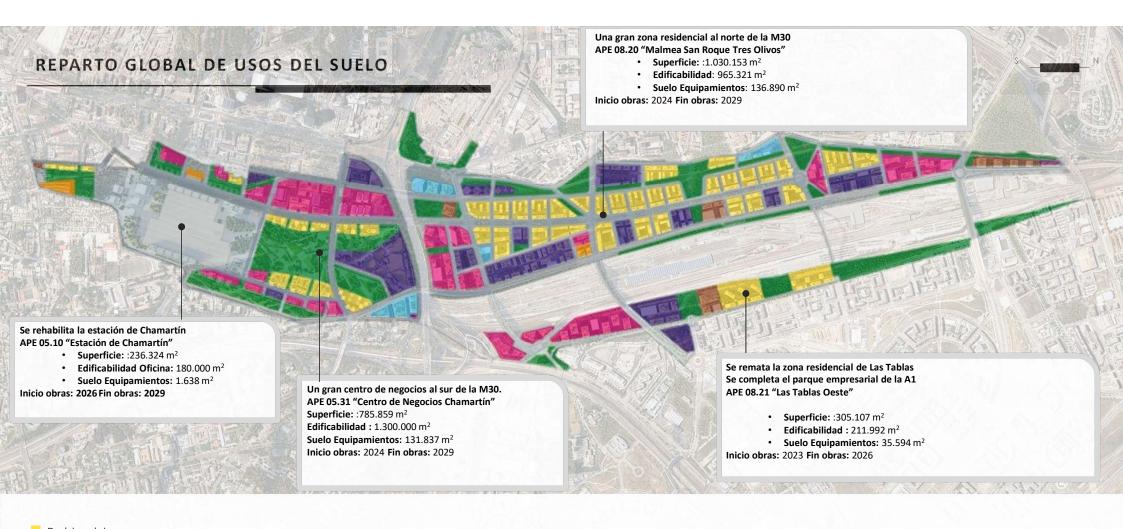


Índice

Madrid Nuevo Norte


O2 Estrategia energética de Madrid Nuevo Norte

Terciario (oficinas, comercios, hostelería, ocio)

Zonas verdes

Equipamiento público deportivo

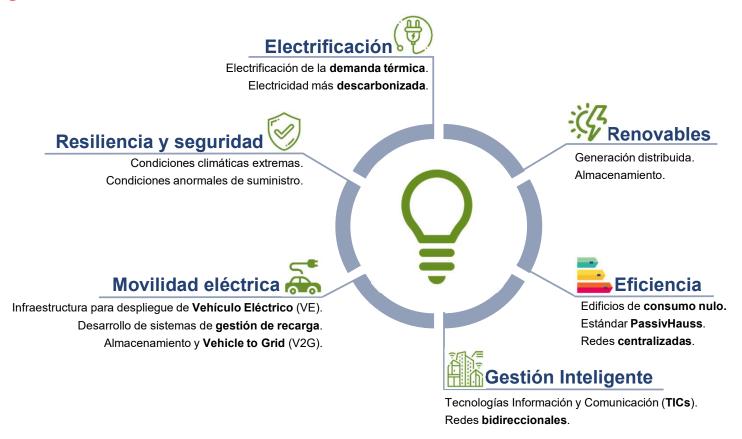
Equipamiento público educativo, salud y cívico-social

Otras dotaciones y Servicios Públicos

Dotacional privado

Servicio de transporte

4 ámbitos de desarrollo



Estrategia energética de Madrid Nuevo Norte

Visión

Modelo energético cero emisiones para MNN basado en la eficiencia, la electrificación, la digitalización y las energías renovables in situ.

Normativa urbanística de MNN

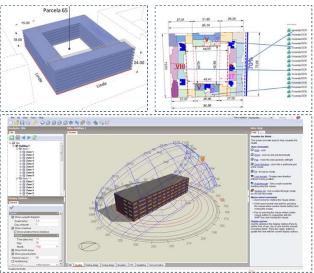
La MPG establece criterios de eficiencia energética para MNN por encima de la normativa nacional

Edificación

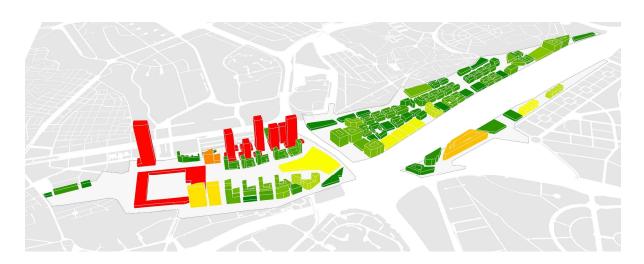
- Nivel más alto de calificación energética --- Energía positiva
- Criterios de demanda térmica y hermeticidad establecidos en el estándar Passivhaus para la edificación residencial.
- Consumo energético limitado según criterios más exigentes de lo establecido en el CTE:
 - Cep,tot, lim: 85% del valor límite
 - Cep,nren, lim: 70% del valor límite
- Reserva de espacios para generación de energía renovable por encima de lo definido por el CTE y aplicable a todos los usos.

Urbanización

- Instalaciones de recarga de vehículos eléctricos, y/o futura tecnología limpia cero emisiones en viario público.
- Máxima calificación energética del alumbrado exterior.
- Análisis de redes térmicas centralizadas e implicaciones de la electrificación de la demanda térmica.
- Análisis de redes eléctricas para generación distribuida y comportamiento bidireccional e inteligente de la red.



Análisis de la demanda energética de los edificios de MNN


Se modeliza la demanda horaria por uso de MNN en escenarios de gestión individual y agregada (24h)

Modelo virtual de vivienda-dotacionalterciario/edificio/distrito.

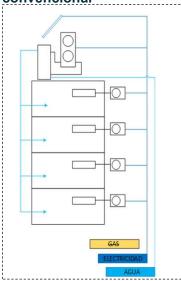
Demanda de Madrid Nuevo Norte

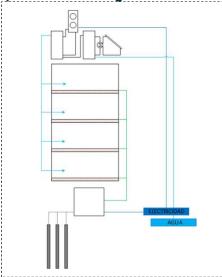
Metodología para el estudio de la demanda real

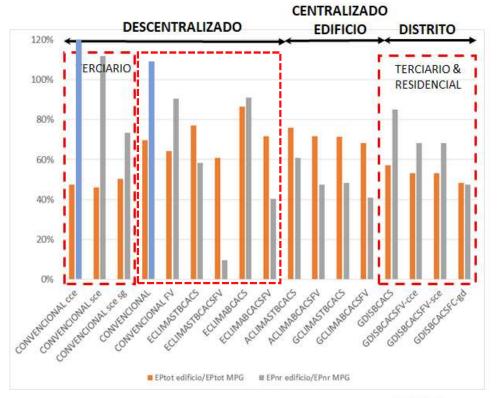
Análisis de la demanda térmica de MNN

Se analizan 17 soluciones térmicas para dar respuesta a la demanda de MNN

Equipos climatización Descentralizado	Equipos ACS	Fotovoltaica	Unidades terminales	
Caldera Enfriadora multisplit Bomba calor aerotérmica multisplit Centralizado por Edificio	Solar térmica Bomba calor aerotérmica Caldera apoyo	Con o sin fotovoltaica	Expansión directa Radiadores	
Bomba calor aerotérmica Bomba calor geotérmica Centralizado por Distrito	Solar térmica Bomba calor aerotérmica	Con o sin fotovoltaica	Suelo radiante y refrescante	
Caldera, enfriadora multiplit Bomba calor geotérmica	Bomba calor hidrotérmica	Con o sin fotovoltaica	Estructura termo activada	Madrid Nuevo Norte


Modelo energético para satisfacer la demanda de los Edificios de MNN


Modelo energético


- ► Se estudian con detalle 17 alternativas:
 - Modelo descentralizado: 9
 - Modelo centralizado por edificio: 4
 - Modelo centralizado redes de distrito: 4

Residencial convencional

Residencial centralizado por edificio con geotermia

Se han estudiado los indicadores de EPT, EPNR y emisiones de CO2

Modelo energético para satisfacer la demanda de los Edificios de MNN

Opciones planteadas de modelos de redes de distrito de frío/calor.

Opción 3.2: Bombas de Calor aerotérmicas y geotérmicas.

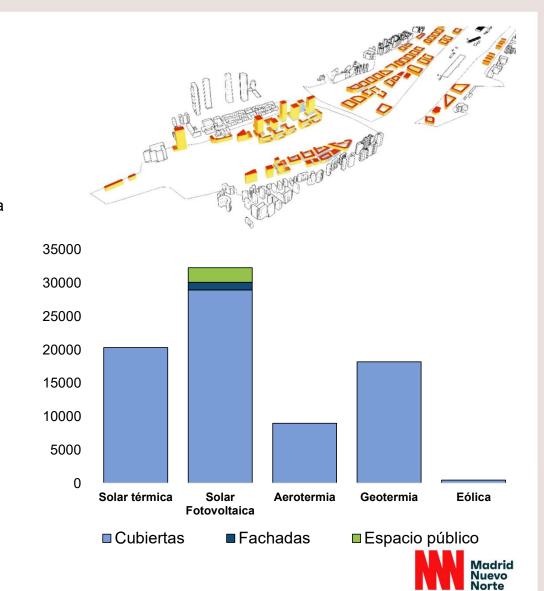
- Red distribución: 6 Tubos (Dmax<0,5m).
- Plantas: 3 centrales de 2 plantas:
 - Central 1: 1.150 m2
 - Central 2: 960 m2
 - Central 3: 460 m2

Modelo energético para satisfacer la demanda de los Edificios de MNN

Opciones planteadas de modelos de redes de distrito de frío/calor.

Opción 3.3: Red completamente geotérmica de baja temperatura con minicentrales enterradas.

- Red distribución: 6 Tubos (Dmax<0,5m).
- Plantas: 11 centrales de 100 m2 x 2 plantas cada una.
- 88 bombas calor de 220-600kW, 46MW potencia instalada total.
- 57.810m tuberías enterradas con DN150-DN500.
- 7.715 sondeos de 150m de profundidad para geotermia, 1.157.250m de intercambiador geotérmico.

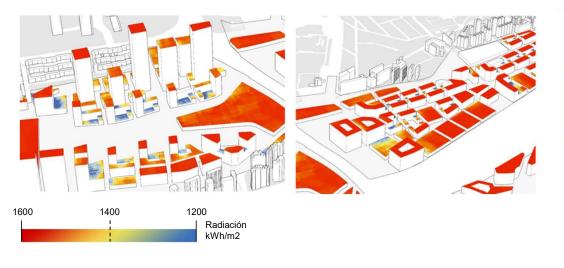


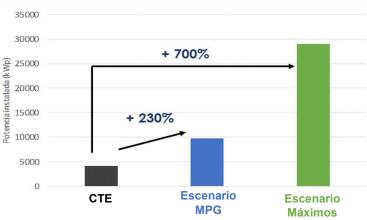
Análisis del potencial renovable in situ

Potencial de generación de energía renovable

- Energía solar como vector principal . Producción fotovoltaica equivalente a consumo eléctrico de todo el sector residencial.
- Complemento de aerotermia y geotermia que permite alta integración de Fotovoltaica.
- Eólica residual.
- ► Espacio disponible en cubierta. Solar térmica y Fotovoltaica compiten por el mismo espacio.
- Total potencia instalada: 29 MW
- ► Fotovoltaica adicional en espacios públicos (2MW).
- Total energía producida: 44 GWh.

Análisis del potencial renovable in situ




Maximización de la generación Fotovoltaica

- Mapa de radiación global del ámbito.
- Maximizar la generación fotovoltaica en edificios.
- ► Potencial de generación en espacio público.
- Coordinación con el MD de Diseño Urbano para determinar soluciones óptimas.
- Fotovoltaica en espacio público cubre demanda alumbrado público.

Preparado para el vehículo eléctrico

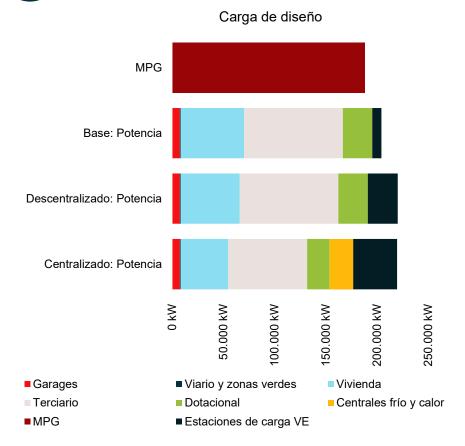
Escenarios VE en Edificación

VE.1: Normativa MPG 2.944 puntos recarga / Potencia: 11,4 MW

VE.2: Electrificación intermedia 12.793 puntos recarga / Potencia: 67 MW

VE.3:Electrificación alta 21.207 puntos recarga / Potencia: 133,2 MW % Plazas Electrificadas

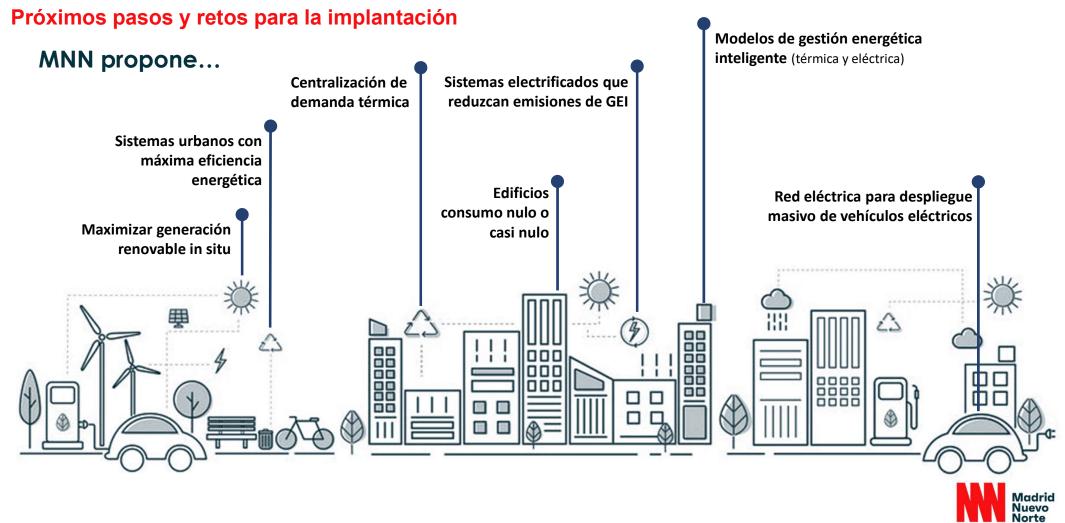
Residencial	Terciario	Viales	
10	10	10	
40	20	10	
100	30	10	


Madrid Nuevo

Distintos escenarios de penetración. Visión de futuro.

- ► Recarga en destino. 100% plazas edificios residenciales.
- Recargas ocasionales: 30% terciario, 10% espacio público.
- Gestión recarga integrada con renovables y almacenamiento.

Redes de infraestructura eléctrica inteligente y bidireccional


- La red eléctrica será capaz de transportar la demanda y generación previstos incluso en escenarios de alta electrificación, demanda térmica y Vehículo eléctrico.
- La implantación de tecnologías Smart-Grid permitirá evitar futuros refuerzos de red.

Centros de transformación inteligentes

Baterías Red de vehículos eléctricos

Gestión de la demanda

